A generalization of the fixed point estimate
نویسندگان
چکیده
In this paper, the problem of proportional covariance matrices estimation for random Gaussian complex vectors is investigated. The maximum likelihood estimates of the matrix and the scale factors are derived, and their statistical performances are studied, through bias, consistency and asymptotic distribution. It is also shown that the problem treated here generalizes the covariance estimation problem for Spherically Invariant Random Vector (SIRV). An iterative estimation algorithm is proposed. A simulation based on a detection problem is presented. The results suggest that the asymptotic distribution obtained is a really good approximation, even for a small number of data.
منابع مشابه
A generalization of Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces
In this paper, we give some results on the common fixed point of self-mappings defined on complete $b$-metric spaces. Our results generalize Kannan and Chatterjea fixed point theorems on complete $b$-metric spaces. In particular, we show that two self-mappings satisfying a contraction type inequality have a unique common fixed point. We also give some examples to illustrate the given results.
متن کاملGeneralization of Darbo's fixed point theorem and application
In this paper, an attempt is made to present an extension of Darbo's theorem, and its applicationto study the solvability of a functional integral equation of Volterra type.
متن کاملContractive gauge functions in strongly orthogonal metric spaces
Existence of fixed point in orthogonal metric spaces has been initiated recently by Eshaghi and et al. [On orthogonal sets and Banach fixed Point theorem, Fixed Point Theory, in press]. In this paper, we introduce the notion of the strongly orthogonal sets and prove a genuine generalization of Banach' fixed point theorem and Walter's theorem. Also, we give an example showing that our main theor...
متن کاملNew Generalization of Darbo's Fixed Point Theorem via $alpha$-admissible Simulation Functions with Application
In this paper, at first, we introduce $alpha_{mu}$-admissible, $Z_mu$-contraction and $N_{mu}$-contraction via simulation functions. We prove some new fixed point theorems for defined class of contractions via $alpha$-admissible simulation mappings, as well. Our results can be viewed as extension of the corresponding results in this area. Moreover, some examples and an application to funct...
متن کاملCharacterization of weak fixed point property for new class of set-valued nonexpansive mappings
In this paper, we introduce a new class of set-valued mappings which is called MD-type mappings. This class of mappings is a set-valued case of a class of the D-type mappings. The class of D-type mappings is a generalization of nonexpansive mappings that recently introduced by Kaewkhao and Sokhuma. The class of MD-type mappings includes upper semi-continuous Suzuki type mappings, upper semi-con...
متن کاملRational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces
In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015